<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2><a href="http://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts" target="_blank">ECMWF</a>: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts". ECMWF is now running its own Artificial Intelligence/Integrated Forecasting System (AIFS) as part of its experiment suite. These machine-learning-based models are very fast, and they produce a 10-day forecast with 6-hourly time steps in approximately one minute. </h2></div> </div> <div class="eI0"> <div class="eI1">Ververst:</div> <div class="eI2">4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 14:00 MEZT</div> </div> <div class="eI0"> <div class="eI1">Resolutie:</div> <div class="eI2">0.25° x 0.25°</div> </div> <div class="eI0"> <div class="eI1">Parameter:</div> <div class="eI2">Cloud cover (low,middle,high,total)</div> </div> <div class="eI0"> <div class="eI1">Beschrijving:</div> <div class="eI2"> Clouds are vertically divided into three levels: low, middle, and high. Each level is defined by the range of levels at which each type of clouds typically appears.<br><br> <table border="0" cellpadding="2" cellspacing="2" style="width:100%"> <tbody><tr> <th>Level</th> <th>Polar Region</th> <th>Temperate Region</th> <th>Tropical Region</th> </tr> <tr align="center"> <th align="left">High Clouds</th> <td >10,000-25,000 ft<br>(3-8 km)</td> <td>16,500-40,000 ft<br>(5-13 km)</td> <td>20,000-60,000 ft<br>(6-18 km)</td> </tr> <tr align="center"> <th align="left">Middle Clouds</th> <td>6,500-13,000 ft<br>(2-4 km)</td> <td>6,500-23,000 ft<br>(2-7 km)</td> <td>6,500-25,000 ft<br>(2-8 km)</td> </tr> <tr class="even" align="center"> <th align="left">Low Clouds</th> <td>Surface-6,500 ft<br>(0-2 km)</td> <td>Surface-6,500 ft<br>(0-2 km)</td> <td>Surface-6,500 ft<br>(0-2 km)</td> </tr> </tbody></table> <br><br>The types of clouds are:<br><br> High clouds: Cirrus (Ci), Cirrocumulus (Cc), and Cirrostratus (Cs). They are typically thin and white in appearance, but can appear in a magnificent array of colors when the sun is low on the horizon.<br><br> Middle clouds: Altocumulus (Ac), Altostratus (As). They are composed primarily of water droplets, however, they can also be composed of ice crystals when temperatures are low enough.<br><br> Low clouds: Cumulus (Cu), Stratocumulus (Sc), Stratus (St), and Cumulonimbus (Cb) are low clouds composed of water droplets. <br> </div> </div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br> <br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br> </div></div> </div>