<div class="eI0">
  <div class="eI1">Modell:</div>
  <div class="eI2"><h2><a href="http://www.meteo.be" target="_blank">ALARO</a>: "Data Source: Royal Meteorological Institute of Belgium (RMI) "</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Aktualisierung:</div>
  <div class="eI2">4 times per day, from 00:00, 06:00, 12:00 and 18:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 13:00 MEZ</div>
 </div>
 <div class="eI0">
  <div class="eI1">Aufl&ouml;sung:</div>
  <div class="eI2">0.053&deg; x 0.053&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">Parameter:</div>
  <div class="eI2">Luftdruck reduziert auf Meeresh&ouml;he </div>
 </div>
 <div class="eI0">
  <div class="eI1">Beschreibung:</div>
  <div class="eI2">
Bodenwetterkarte<br><br>
Die Bodenwetterkarte zeigt den auf Meeresh&ouml;he reduzierten
Bodendruck. Aus ihr geht die Gro&szlig;wetterlage hervor. Zudem
sind kleinere synoptisch-skalige Wellen deutlich und
mesokalige Kalt- und Warmfronten ansatzweise zu sehen.
    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">Spaghetti plots:</div>
  <div class="eI2">
are a method of viewing data from an ensemble forecast.<br>
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.<br>
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.<br>
<br>Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from <a href="http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682" target="_blank">http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&amp;oldid=300824682</a>
   </div>
  </div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numerische Wettervorhersagen sind rechnergest&uuml;tzte Wettervorhersagen. Aus dem Zustand der Atmosph&auml;re zu einem gegebenen Anfangszeitpunkt wird durch numerische L&ouml;sung der relevanten Gleichungen der Zustand zu sp&auml;teren Zeiten berechnet. Diese Berechnungen umfassen teilweise mehr als 14 Tage und sind die Basis aller heutigen Wettervorhersagen.<br><br>
In einem solchen numerischen Vorhersagemodell wird das Rechengebiet mit Gitterzellen und/oder durch eine spektrale Darstellung diskretisiert, so dass die relevanten physikalischen Gr&ouml;&szlig;en, wie vor allem Temperatur, Luftdruck, Windrichtung und Windst&auml;rke, im dreidimensionalen Raum und als Funktion der Zeit dargestellt werden k&ouml;nnen. Die physikalischen Beziehungen, die den Zustand der Atmosph&auml;re und seine Ver&auml;nderung beschreiben, werden als System partieller Differentialgleichungen modelliert. Dieses dynamische System wird mit Verfahren der Numerik, welche als Computerprogramme meist in Fortran implementiert sind, n&auml;herungsweise gel&ouml;st. Aufgrund des gro&szlig;en Aufwands werden hierf&uuml;r h&auml;ufig Supercomputer eingesetzt.<br><br>
<br>Seite „Numerische Wettervorhersage“. In: Wikipedia, Die freie Enzyklop&auml;die. Bearbeitungsstand: 21. Oktober 2009, 21:11 UTC. URL: <a href="http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&amp;oldid=65856709" target="_blank">http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&oldid=65856709</a> (Abgerufen: 9. Februar 2010, 20:46 UTC) <br>
</div></div>
</div>