<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2><a href="http://www.knmi.nl/" target="_blank" target="_blank">HIRLAM</a>(High Resolution Limited Area Model) from the Netherland Weather Service</h2></div> </div> <div class="eI0"> <div class="eI1">поÑледнее обновление:</div> <div class="eI2">4 times per day, from 06:00, 12:00, 18:00, and 00:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 15:00 MSK</div> </div> <div class="eI0"> <div class="eI1">Resolution:</div> <div class="eI2">0.1° x 0.1°</div> </div> <div class="eI0"> <div class="eI1">параметер:</div> <div class="eI2">Precipitation in mm (or litres per square metres)</div> </div> <div class="eI0"> <div class="eI1">Description:</div> <div class="eI2"> The precipitation map - updated every 6 hours - shows the modeled precipitation in mm. The precipitation areas are encircled by isohyets - lines with equal amounts of precipitation. However, modeling precipitation is still not very reliable. If you compare the modeled results with observed values you will realize that the model is nothing better than a first order approach. Yet this chart is of some use for forecasters.<br> Note: Based on international convention meteorologists use the metric system. 100 mm of precipitation is equivalent to roughly 4 inches. </div> </div> <div class="eI0"> <div class="eI1">HIRLAM:</div> <div class="eI2"><a href="http://www.knmi.nl/" target="_blank">HIRLAM</a>The international HIRLAM project is a continuing effort to develop and maintain a state of the art high resolution limited area model for operational use in the participating institutes. By 2001 HIRLAM research developments had outstripped the operational HIRLAM system at KNMI through a substantial increase in model resolution and many improvements in the model formulation.<br> </div></div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br> <br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br> </div></div> </div>