<div class="eI0">
  <div class="eI1">Model:</div>
  <div class="eI2"><h2>RAP (Rapid Refresh)</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Zaktualizowano:</div>
  <div class="eI2">24 times per day, from 00:00 - 23:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Czas uniwersalny:</div>
  <div class="eI2">12:00 UTC = 13:00 CET</div>
 </div>
 <div class="eI0">
  <div class="eI1">Rozdzielczo&#347;&#263;:</div>
  <div class="eI2">0.128&deg; x 0.123&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">parametr:</div>
  <div class="eI2">CAPE and vertical velocity at 700 hPa</div>
 </div>
 <div class="eI0">
  <div class="eI1">Opis:</div>
  <div class="eI2">
The Convectively Available Potential Energy (CAPE) map - updated every 6 hours - shows the modelled convectively available 
potential energy. CAPE represents the amount of buoyant energy (J/kg) available to accelerate a parcel vertically, or the amount of work 
a parcel does on the environment. The higher the CAPE value, the more energy available to foster storm growth. The
potential energy can be converted to kinetic energy reflected in upward motion.
<BR>
It should be remembered that CAPE represents potential energy, and will only be used should a parcel be lifted to the level of free convection. 
When values are above 3500 j/kg and storms do develop, they may build rapidly and quickly become severe. 
Often these storms are referred to as "explosive storms" by chasers and professionals. In a high CAPE environment 
storms that develop can usually be seen by the human eye as rising rapidly.
Higher CAPE typically involves stronger storms with a higher chance of large hail and other severe weather. Note that
CAPE is usually of lesser importance than the vertical shear environment for tornadoes. The probability of large hail increases 
with CAPE, given at least moderate shear(values around 500-1000 J/kg are sufficient). 
<BR>
CAPE is very sensitive to small differences in the moisture and temperature profiles. While the maps indicate
1000 J/kg CAPE at some location, a <a href="/cgi-bin/expertcharts?LANG=nz&MENU=0000000000&CONT=euro&MODELL=temps&MODELLTYP=4&BASE=-&VAR=temps&LKEY=UK&HH=6&ARCHIV=0&SHOW=1">skew-T thermodynamic diagram</a> at that location may indicate 500-1500 J/kg.
(Source: <a href="http://www.lightningwizard.com" target="_blank">The Lightning Wizard</a>)
<BR>
Table 1: Characteristic values for CAPE<BR>
<TABLE border=1>
<TR>
   <TD><STRONG>CAPE value</STRONG></TD>

   <TD><STRONG>Convective potential</STRONG></TD>
</TR>
<TR>
   <TD>0 </TD>
   <TD>Stable</TD>
</TR>
<TR>
   <TD>0-1000</TD>
   <TD>Marginally Unstable</TD>

</TR>
<TR>
   <TD>1000-2500</TD>
   <TD>Moderately Unstable</TD>
</TR>
<TR>
   <TD>2500-3500</TD>
   <TD>Very Unstable</TD>
</TR>

<TR>
	<TD> 3500 + </TD>
	<TD> Extremely Unstable </TD>
<TR>
</TABLE> 

    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">RAP:</div>
<a href="http://www.ncep.noaa.gov" target="_blank">RAP</a> <br>
  <div class="eI2">The Rapid Refresh (RAP) is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and analysis/assimilation system to initialize that model. It is run with a horizontal resolution of 13 km and 50 vertical layers.
,<br>
The RAP was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. The model is run for every hour of day and is integrated to 18 hours for each cycle. The RAP uses the ARW core of the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis - the analysis is aided with the assimilation of cloud and hydrometeor data to provide more skill in short-range cloud and precipitation forecasts.<br>
</div></div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numeryczna prognoza pogody - ocena stanu atmosfery w przysz&#322;o&#347;ci na podstawie znajomo&#347;ci warunk&oacute;w pocz&#261;tkowych oraz si&#322; dzia&#322;aj&#261;cych na powietrze. Numeryczna prognoza oparta jest na rozwi&#261;zaniu r&oacute;wna&#324; ruchu powietrza za pomoc&#261; ich dyskretyzacji i wykorzystaniu do oblicze&#324; maszyn matematycznych.<br>
Pocz&#261;tkowy stan atmosfery wyznacza si&#281; na podstawie jednoczesnych pomiar&oacute;w na ca&#322;ym globie ziemskim. R&oacute;wnania ruchu cz&#261;stek powietrza wprowadza si&#281; zak&#322;adaj&#261;c, &#380;e powietrze jest ciecz&#261;. R&oacute;wna&#324; tych nie mo&#380;na rozwi&#261;zać w prosty spos&oacute;b. Kluczowym uproszczeniem, wymagaj&#261;cym jednak zastosowania komputer&oacute;w, jest za&#322;o&#380;enie, &#380;e atmosfer&#281; mo&#380;na w przybli&#380;eniu opisać jako wiele dyskretnych element&oacute;w na kt&oacute;re oddzia&#322;ywaj&#261; rozmaite procesy fizyczne. Komputery wykorzystywane s&#261; do oblicze&#324; zmian w czasie temperatury, ci&#347;nienia, wilgotno&#347;ci, pr&#281;dko&#347;ci przep&#322;ywu, i innych wielko&#347;ci opisuj&#261;cych element powietrza. Zmiany tych w&#322;asno&#347;ci fizycznych powodowane s&#261; przez rozmaitego rodzaju procesy, takie jak wymiana ciep&#322;a i masy, opad deszczu, ruch nad g&oacute;rami, tarcie powietrza, konwekcj&#281;, wpływ promieniowania s&#322;onecznego, oraz wp&#322;yw oddziaływania z innymi cz&#261;stkami powietrza. Komputerowe obliczenia dla wszystkich element&oacute;w atmosfery daj&#261; stan atmosfery w przysz&#322;o&#347;ci czyli prognoz&#281; pogody.<br>
W dyskretyzacji r&oacute;wna&#324; ruchu powietrza wykorzystuje si&#281; metody numeryczne r&oacute;wna&#324; r&oacute;&#380;niczkowych cz&#261;stkowych - st&#261;d nazwa numeryczna prognoza pogody.<br>
<br>Zobacz Wikipedia, Numeryczna prognoza pogody, <a href="http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody" target="_blank">http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody</a> (dost&#281;p lut. 9, 2010, 20:49 UTC).<br>
</div></div>
</div>